Organo-f-element thermochemistry

J. Goffart* and X. Jemine**

Laboratory of Analytical Chemistry and Radiochemistry, University of Liège, Sart Tilman, B-4000 Liège (Belgium)

F. Wastin and J. Fuger

Commission of the European Communities, JRC, Institute for Transuranium Elements, Postfach 2340, D-7500 Karlsruhe (Germany)

Abstract

Actinide-oxygen bond disruption enthalpies D(An-O) in Cp^*_3AnR and Cp^{**}_3AnR ($Cp^*_3 \equiv C_5H_4Si(CH_3)_3$; $Cp^{**} \equiv C_5H_4'Bu$; $R \equiv H$ or CH_3 ; $An \equiv U$ or Th) have been measured by iodinolysis and alcoholysis titration calorimetry. D(An-O) values are as follows (kJ mol⁻¹): 317 ± 15 for Cp^*_3UH , 319 ± 10 for $Cp^*_3UCH_3$ and 392 ± 11 and 371 ± 24 for the respective Cp^*_3ThR analogues. $D(Cp^{**}_3U-O)$ is found at 307 ± 9 kJ mol⁻¹. The influence of the nature of the titrants is observed in the series EtOH, CF_3CH_2OH , 'BuOH.

1. Introduction

In the last decade the activity in actinide organometallic thermochemistry has been very intense. Initial efforts [1-4] focused upon determining relative solution phase bond disruption enthalpies D by alcoholytic isoperibol titration calorimetry.

The measured enthalpy change can be expressed as the difference between the enthalpies of the bonds formed and ruptured during the reaction of alcoholysis:

$$\Delta H_{\text{react}} = D(L_n \text{An}-\text{R}) + D(\text{R}'\text{O}-\text{H})$$
$$-D(L_n \text{An}-\text{OR}) - D(\text{R}-\text{H})$$
(1)

The main problem in these measurements is the knowledge of D(An-O). An estimate of this value was derived on the basis of the crude approximation [1-5]

$$\frac{D(L_nAn-OR')}{D(An-X_4)} \approx \frac{\tilde{D}(M(OR)_4)}{\tilde{D}(MX_4)}$$
(2)

where $M \equiv Ti$, Zr or Hf and X is a halogen.

The estimated values of 518.8 and 481.2 kJ mol⁻¹ respectively for thorium and uranium compounds are probably affected by a substantial uncertainty and a serious problem of transferability. The enthalpies derived from alcoholysis are termed "relative" and are satisfactory for understanding most aspects of organoactinide chemistry; nevertheless, absolute D(An-R) values would allow comparison with thermochemical

data for other organometallic compounds. Schock et al. [6] have presented a new approach to measuring absolute actinide-hydrocarbyl bond disruption, namely halogenolytic calorimetry. The one-electron redox reaction is based on the following equations:

$L_nAn - X \longrightarrow L_nAn + \frac{1}{2}X_2$	$-\Delta H_{\text{oxy}}$	(3)
		~ /

$$L_n An - R + X_2 \longrightarrow L_n An - X + R - X \qquad \Delta H_{react} \qquad (4)$$

$$X^* \longrightarrow \frac{1}{2}X_2 \qquad \qquad -\frac{1}{2}D(X_2) \quad (5)$$

$$\mathbf{RX} \longrightarrow \mathbf{R}^* + \mathbf{X}^* \qquad \qquad D(\mathbf{R} - \mathbf{X}) \qquad (6)$$

$$L_{N}An-R \longrightarrow L_{n}An + R^{*}$$
⁽⁷⁾

$$D(An-R) = \Delta H_{react} - \Delta H_{oxy} - \frac{1}{2}D(X_2) + D(R-X) \qquad D(An-R)$$
(8)

By combination of alcoholysis and iodinolysis experimental results, it is possible to deduce a so-called absolute bond disruption enthalpy D(U-O), keeping in mind that numerous assumptions have been made to obtain this value: the solvation effects in toluene, the possible U-U interactions in L₃U, the partial dimerization of Cp*₃ThH [7], etc. have been neglected.

2. Experimental details

All procedures were performed using standard techniques for air-sensitive compounds.

Toluene, toluene- d^8 , tetrahydrofuran (THF) and pentane were dried over Na-K and distilled under an argon atmosphere.

The complexes with trimethylsilyl cyclopentadienyl (Cp*) and *tert*-butylcyclopentadienyl (Cp**), *i.e.* Cp*₃U

^{*}Research Associate, Inter-University Institute for Nuclear Sciences, Brussels, Belgium.

^{**}Research Assistant, National Fund for Scientific Research, Brussels, Belgium.

TABLE 1. Enthalpies of reaction of I_2 and CF_3CH_2OH with organometallic compounds in toluene and bond disruption enthalpies (kJ mol⁻¹) [8, 14]

Compound	$\Delta H_{\rm iod}$ per mole of complex	D(An-H/CH ₃)	$\Delta H_{ m akc}$	D(An–O)
Cp* ₃ ThH	-171.4+5.8	277+6	-114±5	392 ± 11
Cp* ₃ ThCH ₃	-196.7 + 7.0	196 ± 7	-178 ± 22	371 ± 24
Cp* ₃ UH	-154.3 ± 2.8	253.7 ± 5.1	-63 ± 11	317 ± 15
Cp* ₃ UCH ₃	-	188±5 [6]	-134 ± 4	319 ± 10

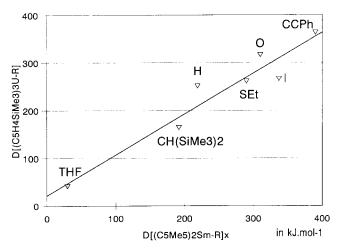


Fig. 1. Relationship between $D(Cp_{3}U-R)$ and $D((C_{5}Me_{5})_{2}Sm-R)_{x}$.

TABLE 2. Bond disruption enthalpies (kJ mol⁻¹)

Alcohol	$D(Cp_{3}^{*}U-O)$	$D(Cp^{**}_{3}U-O)$
	D(Cp 30-0)	
ЕТОН	324 ± 24	
CF ₃ CH ₂ OH	317 ± 15	
'BuOH	280 ± 8	307 ± 9

[8], $Cp^*_3UCl[8]$, $Cp^*_3ThH[7]$, $Cp^{**}_3UCl[10]$, Cp^{**}_3UH [11], $Cp^*_3UCH_3$ [6], Cp^*_3UOEt [11], $Cp^*_3UOCH_2CF_3$, $Cp^*_3UO'Bu$, $Cp^{**}_3UO'Bu$, Cp^{**}_3UOEt , Cp^*_3ThCl , $Cp^*_3ThCH_3$ and $Cp^*_3ThOCH_2CF_3$ [12], were prepared in THF or toluene and purified by recrystallization in pentane as described in the literature (see ref. 12 and references cited therein).

The titrants EtOH, 'BuOH and CF_3CH_2OH were dried over the corresponding magnesium alcoholate or CaH_2 [13], transferred over 4 Å molecular sieves and vacuum distilled prior to use. The calorimeter and the procedure employed in this study are described in ref. 4. In this work, sharp, well-defined end points were observed when a stoichiometrically appropriate amount of iodine or alcohol was added to the organometallic solutions. On monitoring by ¹H nuclear magnetic resonance (NMR, Bruker AM 400), it has been verified that the titrant does not attack the η^5 functionalities of the Cp ligand.

3. Results and discussion

The starting compounds chosen for this study, *i.e.* $Cp_{3}^{*}UH$, $Cp_{3}^{*}UCH_{3}$, $Cp_{3}^{**}UH$, $Cp_{3}^{*}ThH$ and $Cp_{3}^{*}ThCH_{3}$, are monomeric in common aromatic solvents [6, 8, 9, 12]. The enthalpies of solution of the complexes in toluene are rather small and well known [6, 8, 12, 14].

The reactions used in the iodinolysis of a uranium compound are as follows:

$Cp_{3}U-CH_{3}+I_{2} \longrightarrow Cp_{3}UI+CH_{3}-I$	$\Delta H_{ m iod}$	(9)
$Cp^*_3UI \longrightarrow Cp^*_3U + \frac{1}{2}I_2$	$-\Delta H_{\rm oxy}$	(10)
$I^* \longrightarrow \frac{1}{2}I_2$	$-\frac{1}{2}D(\mathbf{I}_2)$	(11)

$$CH_3-I \longrightarrow CH_3^* + I^*$$
 $D(CH_3-I)$ (12)

$$Cp^*_3U-CH_3 \longrightarrow Cp^*_3U+CH_3^* \qquad D(Cp^*_3U-R)$$
 (13)

For the alcoholysis the main equations are as follows:

$$Cp_{3}^{*}U-CH_{3}+CF_{3}CH_{2}OH \longrightarrow$$

$$Cp_{3}^{*}U-OCH_{2}CF_{3}+CH_{4}\Delta H_{exp}$$
 (14)

 $D(Cp_{3}^{*}U-OCH_{2}CF_{3})$

$$= D(O-H) + D(U-CH_3) - D(CH_3-H) - \Delta H_{exp} \quad (15)$$

D(O-H) has been estimated to be 436 kJ mol⁻¹ [15], while D(R-H), $D(I_2)$ and $D(CH_3-I)$ can be found in the literature [16–19].

Knowing the value of $D(U-CH_3)$ obtained by iodinolysis, eqn. (15) can be solved. The results of the thermochemical experiments for methyl and hydride derivatives are set out in Table 1.

The derived $D(Cp^*_3U-O)$ values obtained from methyl and hydride derivatives are similar, 317 and 319 kJ mol⁻¹ respectively, but differ widely from Bruno *et al.*'s estimated value of 481.2 kJ mol⁻¹ [1]. On the other hand, Nolan *et al.* [20] have shown that a linear correlation exists between $D(Cp^*_3U-R)$ and $D((C_5Me_5)_2Sm-R)_x$ (x=1 for $R \equiv alkyl$, iodide, THF; and x = 2 for $R \equiv H$). The values that we have determined for Cp*₃UH [14] and Cp*₃USEt [21] confirm the validity of this correlation. By this graphical approach D(U-O)should be estimated as about 310 kJ mol⁻¹ [22], in very good agreement with our experimental value (Fig. 1).

For the thorium compounds the thermochemical datum corresponding to the oxidative reaction, ΔH_{oxy} , has not yet been measured. We employ the accepted parallelism between Th-alkyl and U-alkyl bond disruption enthalpies, D(Th-R) being about 40 kJ mol⁻¹ higher than D(U-R) [3, 4] (Table 1) and the enthalpy of the oxidation reaction being about 230 kJ mol⁻¹ [8]. The derived bond disruption enthalpies D(Th-O) are 392 ± 11 and 370 ± 24 kJ mol⁻¹ for Cp*₃ThH and Cp*₃ThCH₃ respectively.

'BuOH has been reported [1, 2] as titrant in calorimetric studies of Cp derivatives. One conclusion of these studies was that the bond disruption enthalpies obtained with 'BuOH and CF₃CH₂OH are mutually consistent for different thorium organometallics, $D((C_5Me_5)_2Th(C_2H_5)Cl)$ being 285.8±8.4 [1] and 275.7±10.5 kJ mol⁻¹ [2] respectively.

In this work the reactions of EtOH, 'BuOH and CF_3CH_2OH with Cp^*_3UH and of 'BuOH with Cp^{**}_3UH are followed thermodynamically and the results are presented in Table 2.

It seems that a small decrease in the D(U-O) values can be observed in the series EtOH>CF₃CH₂OH >'BuOH, the nature of the alcohol being at least as important as the nature of the substituent on the Cp ring.

Acknowledgment

Financial support from the Inter-University Institute for Nuclear Sciences (Brussels) is gratefully acknowledged.

References

- 1 J.W. Bruno, T.J. Marks and L.R. Morss, J. Am. Chem. Soc., 105 (1983) 6824.
- 2 D.C. Sonnenberger, L.R. Morss and T.J. Marks, Organometallics, 4 (1985) 352.
- 3 J.W. Bruno, H.A. Stecher, L.R. Morss, D.C. Sonnenberger and T.J. Marks, J. Am. Chem. Soc., 108 (1986) 7275.
- 4 S. Bettonville, J. Goffart and J. Fuger, J. Organomet. Chem., 377 (1989) 59.
- 5 G.M. Smith, H. Suzuki, D.C. Sonnenberger, V.W. Day and T.J. Marks, Organometallics, 5 (1986) 549.
- 6 L.E. Schock, A.M. Seyam, M. Sabat and T.J. Marks, *Polyhedron*, 7 (16-17) (1988) 1517.
- 7 X. Jemine, J. Goffart, M. Ephritikhine and J. Fuger, J. Organomet. Chem., 448 (1993) 95.
- 8 J.G. Brennan, R.A. Andersen and A. Zalkin, *Inorg. Chem.*, 25 (1986) 1756.
- 9 J.C. Berthet, J.F. Le Maréchal and M. Ephritikhine, J. Chem. Soc., Chem. Commun., (1991) 360.
- 10 A. Dormond, C. Duval-Huet and J. Tirouflet, J. Organomet. Chem., 209 (1981) 341.
- 11 J.C. Berthet, J.F. Le Maréchal, M. Lance, M. Nierlich, J. Vigner and M. Ephritikhine, J. Chem. Soc., Dalton Trans., (1992) 1573.
- 12 X. Jemine, Thèse de Doctorat, Université de Liège, 1994.
- 13 L.E. Schock and T.J. Marks, J. Am. Chem. Soc., 110 (1988) 7701.
- 14 X. Jemine, J. Goffart, J.C. Berthet and M. Ephritikhine, J. Chem. Soc., Dalton Trans., (1992) 2439.
- 15 D.F. McMillen and D.M. Golden, Ann. Rev. Phys. Chem., 33 (1982) 493.
- 16 D.D. Wagman, W.H. Evans, V.B. Parker, R.H. Schumm and R.L. Nutall, NBS Tech. Note 270-8, 1988.
- 17 D.D. Wagman, W.H. Evans, V.B. Parker, R.H. Schumm, I. Halow, E.M. Bailey, K.L. Churney and R.L. Nutall, J. Phys. Chem. Ref. Data, (1982) Suppl. 2.
- 18 C.H. Rochester and J.R. Symonds, J. Chem. Soc., Faraday Trans. 1, 69 (1973) 1267.
- 19 Thermodynamic Research Center Data Tables, A&M University, College Station, TX, 1967.
- 20 S.P. Nolan, D. Stern and T.J. Marks, J. Am. Chem. Soc., 111 (1989) 7844.
- 21 X. Jemine, J. Goffart, P.C. Leverd and M. Ephritikhine, J. Organomet. Chem., 469 (1994) 55.
- 22 S. Bettonville, J. Goffart and J. Fuger, J. Organomet. Chem., 393 (1990) 205.